
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml


Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000



Let’s Implement It!

Physical 

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP1: How to virtualize CPU resources temporally and spatially?



Let’s Implement It!

Physical 

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP2: How to virtualize CPU resources temporally and spatially?



5

Concurrency

• Modern computers often have multiple processors and 

multiple cores per processor

• Concurrency: Multiple processors/cores run different/same 

set of instructions simultaneously on different/shared data



“Placement” (vs. Scheduling)

Physical 

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP2: How to virtualize CPU resources temporally and spatially?

“Placement“ naturally emerges:

Q: how to place processes on each processor so the objective is 

optimal?



7

Placment Goal: Loading Balancing

Load Balancing: Ensuring different cores/proc. are kept roughly 

equally busy, i.e., reduce idle times

❖ Multi-queue multiprocessor scheduling (MQMS) is common

❖ Each proc./core has its own job queue

❖ OS moves jobs across queues based on load

❖ Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3

0 10 20 30 40 50 60 70 80



In ML, How Placement Optimizations Look Like



Mutliprocessing Part 2: memory management

GPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

GPU
Registers

Memory

Stack

Heap

Code

Data

• Strawman solution -> spatial-temporal sharing of CPUs with scheduling 

• Assign 1/3 of the memory to each APP

G1. Convenient?

G3: protection?

G2. Efficient?

• G2.1 can I run N processes but 

not N times slower?

• G2.2 can I run N apps with total 

mem > physical memory cap



10

Memory management v0

P0

P2

P1



11

Memory management v0: Internal fragmentations

Internal Fragmentation

P0

P2

P1

Internal Fragmentation



12

Memory management v1: use a smaller chunk

P0

P2

P1

Q: What is the maximum possible amount of internal 

fragmentation per process?



13

Memory management v1

P4

P1 finishes, P4 arrives
P0

P2

P1

P0

P2



14

Memory: v2

P4

P4 scheduled
P0

P2

P1

P0

P2



15

Memory: v2

P4

P5 arrived
P0

P2

P5

Problem:

There is enough memory for P5, but it 
cannot be scheduled.

external fragmentation

Q: How to address external fragmentation?



Other Problems?

P0

P2

P1

Problem: We can never schedule 

processes with their memory 
consumption greater than memory cap



Other Problems?

P0

P2

P1

Problem:

What if we are unsure about how much 
memory P0/P1/P2 will eventually use?



Other Problems?

P0

P2

P1
Problem:

What if we are unsure about how much 
memory P0/P1/P2 will eventually use?

P1_reserve is the reservation overhead

P1_reserve



Other Problems?

P0

P2

P1

What if we know exactly how much 

memory P0/P1/P2 will eventually use, 
any problem? 



Virtual Address Table

Virtual addresses physical pages

Address translation

Processes is given the 
impression that it is 
working with large, 

contiguous memory

P0

P2

P1

P0

P1

P1

P2

P0

P2

P1



21

Pages and virtual memory

• Page: An abstraction of fixed size chunks of memory/storage

• Page Frame: Virtual slot in DRAM to hold a page’s content

• Page size is usually an OS config

• e.g., 4KB to 16KB

• OS Memory Management can

• Identify pages uniquely

• Read/write page from/to disk when requested by a process

Virtualization of DRAM with Pages



22

Virtual Memory

• Virtual Address vs Physical Address:

• Physical is tricky and not flexible for programs

• Virtual gives “isolation” illusion when using DRAM

• OS and hardware work together to quickly perform address 

translation

• OS maintains free space list to tell which chunks of DRAM are 

available for new processes, avoid conflicts, etc.



Problem addressed?

P0

P2

P1

Problem: We can never schedule processes with 

their memory consumption greater than memory 
cap

Solution: create more virtual addresses than physical 

memory cap. Map additional ones to disk.



Problem addressed?

P0

P2

P1

Problem:

What if we are unsure about how much memory 
P0/P1/P2 will eventually use?

Reserve on virtual address, resolve the mapping 

between virtual and physical pages on-the-fly



Problem addressed?

P0

P2

P1

What if we know exactly how much memory 

P0/P1/P2 will eventually use, any problem?

Because we do everything on the fly – we minimize 
opportunity cost 



Scheduling in ChatGPT

S1 Please help me on 

assignments…

S2 Please summarize 

the readings…

S3 Please tell a joke 

with 1000 words…

• How to allocate memory for 

LLM query?

• Why this could make per 

LLM request cheaper? 



Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

• File System



28

Modules

“System Call” APIs

Process 

Management

Main Memory

Management
Filesystems

Device 

Drivers
Networking

Kernel 

Components

• System call: The core of an OS with modules to abstract the 

hardware and APIs for programs to use

Functionality

Virtualize

processor;

“Process”

abstraction;

Concurrency

Virtualize

Main Memory

Virtualize

disks; “File”

abstraction;

Persistence

Talk to

other I/O

devices

Commun.

over

network

Hardware device-specific programs

Hardware



29

Abstractions: File and Directory

• File: A persistent sequence of bytes that stores a logically coherent 

digital object for an application

• File Format: An application-specific standard that dictates how to 

interpret and process a file’s bytes

• 100s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying data 

models/types, domain-specific, etc.

• Metadata: Summary or organizing info. about file content (aka 

payload) stored with file itself; format-dependent

• Directory: A cataloging structure with a list of references to files 

and/or (recursively) other directories

• Typically treated as a special kind of file

• Sub dir., Parent dir., Root dir.



30

Filesystem

• Filesystem: The part of OS that helps programs create, manage, and 

delete files on disk (sec. storage)

• Roughly split into logical level and physical level

• Logical level exposes file and dir. abstractions and offers System 

Call APIs for file handling

• Physical level works with disk firmware and moves bytes to/from 

disk to DRAM



31

Filesystem

• Dozens of filesystems exist, e.g., ext2, ext3, NTFS, etc.

• Differ on how they layer file and dir. abstractions as bytes, what 

metadata is stored, etc.

• Differ on how data integrity/reliability is assured, support for 

editing/resizing, compression/encryption, etc.

• Some can work with (“mounted” by) multiple OSs



32

Virtualization of File on Disk

• OS abstracts a file on disk as a virtual object for processes

• File Descriptor: An OS-assigned +ve integer identifier/reference for a 

file’s virtual object that a process can use

• 0/1/2 reserved for STDIN/STDOUT/STDERR

• File Handle: A PL’s abstraction on top of a file descr. (fd)



33

Q: What is a database? How is it different 

from just a bunch of files?



Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016



Part 2: Cloud Computing and Distributed Systems

• Intro to Cloud Compute

• Networking

• Distributed Storage and file systems

• Distributed Computing

• Parallelism and consistency

• Advanced Topics



36

Today’s topic

• Why cloud computing?

• Need-based argument

• Utility-based argument

• High-level Introduction of Cloud Computing:

• Cloud computing evolution - sharing granularity

• Cloud computing layers

• Advantages of Cloud computing



Background of Cloud Computing

• 1990: Heyday of parallel computing, multi-processors

• 52% growth in performance per year!

• 2002: The thermal wall

• Speed (frequency) peaks,

but transistors keep

shrinking

• The Multicore revolution

• 15-20 years later than 

predicted, we have hit 

the performance wall



Data Explosion

• Billions of users connected through the net

• WWW, FB, twitter, cell phones, …

• Storage getting cheaper

• Store more data!

• Processing these data

• Need more FLOPs!



Solving the Impedance Mismatch

• Computers not getting faster, and we are drowning in data

• How to resolve the dilemma?

• Solution adopted by web-scale companies

• Go massively distributed and parallel



Enter the World of Distributed Systems

• Distributed Systems/Computing

• Loosely coupled set of computers, communicating through message 

passing, solving a common goal

• Distributed computing is challenging

• Dealing with partial failures (examples?)

• Dealing with asynchrony (examples?)

• Distributed Computing versus Parallel Computing?

• distributed computing=parallel computing + partial failures



Dealing with Distribution: Programming (Part 3)

• We have seen several of the tools that help with distributed 

programming

• Message Passing Interface (MPI)

• Distributed Shared Memory (DSM)

• Remote Procedure Calls (RPC)

• But, distributed programming is still very hard

• Programming for scale, fault-tolerance, consistency, …



Recap: Basics of Computer Organization

To store and retrieve data, we need:
• Storages and Disks 

• Memory

To process data:

• Processors: CPU and GPU

To retrieve data from remote
• Networks



Everything Goes Distributed

To store and retrieve data, we need:
• Distributed storage and disks

• Distributed and shared Memory

To process data:

• Distributed CPU and GPU

To retrieve data from remote
• Networks



The Datacenter is the new Computer

• “Program” == Web search, email, 
map/GIS, …

• “Computer” == 10,000’s computers, 
storage, network

•Warehouse-sized facilities and 
workloads

•Built from less reliable components 
than traditional datacenters



Datacenter/Cloud Computing OS

• If the datacenter/cloud is the new computer

• What is its Operating System?



Classical Operating Systems

• Data storage and sharing

• files, Inter-Process Communication, …

• Programming Abstractions

• system calls, APIs, libraries, …

• Multiplexing of resources

• Scheduling, virtual memory, file systems, …



Datacenter/Cloud Operating System

• Data sharing

• key/value stores, distributed storage, data warehouse

• Programming Abstractions

• MapReduce, PIG, Hive, Spark, Ray

• Multiplexing of resources

• YARN (MRv2), ZooKeeper, BookKeeper, K8S, …



Pioneer: Google Cloud Infrastructure

• Google File System (GFS), 2003

• Distributed File System for entire 

cluster

• Google MapReduce (MR), 2004

• Runs queries/jobs on data

• Manages work distribution & fault-

tolerance

• Colocated with file system

• Apache open source versions Hadoop DFS and Hadoop MR 



Open Question after class

Google has pioneered and created many distributed systems and 

technologies that shape today’s cloud computing, but why Amazon (and 

even Microsoft) wins over Google Cloud (GCP) on Cloud computing market 

shares?



Summary: need-based argument

Need more compute and storage Single computer hits physical limits

Distributed 
Computing

Cloud has a lot of compute and 
storage



Summary: need-based argument

Need more compute and storage Single computer hits physical limits

Distributed 
Computing

On-premise or supercomputers 

also have a lot of compute and 
storage

Cloud has a lot of compute and 
storage



52

Today’s topic

• Why cloud computing?

• Need-based argument

• Utility-based argument

• High-level Introduction of Cloud Computing:

• Cloud computing evolution - sharing granularity

• Cloud computing layers

• Advantages of Cloud computing



Consider a Use Case

• A company needs more compute and storage

Traditional Model
• We manage and store 

computes on premise

• Responsible for security

• Responsible for power

• Responsible for network
• Responsible for …



Consider a Use Case

• A company needs more compute and storage

Traditional Model
If we need more computers (a.k.a. 

we want to scale)

• We order computers

• They are delivered to our site

• We install them and connect 
them to the cluster via network.



Consider a Use Case

• A company needs more compute and storage

Traditional Model
If updates or security patches are 

issued:

• We make sure this is taken care 

of for each computer in the 

cluster.



Cloud Computing Early Concept: Utility computing 

• Utility computing

• From concept of a public utility such as water or electricity

• Consider: everyday electricity usage

• It is summer, we turn on A/C

• We do not notify electric company when we need more electricity. 

It is just there.

• We do not go to hardware store buy/install more generators

• It is Spring, we turn off A/C

• We do not notify electric company when we need less

• It is Winter, we turn on heater

• My usage goes up and down, but I just use



Early Concept: Utility computing 

• Utility computing

• Compute power is available on demand

• I can scale up or down as needed

• I don’t need to determine needs in advance 

• Not the case any more for GPU market



Consider a Use Case

• A company needs distributed compute and storage

Traditional Model
• Determine needs in advance

• Overestimate -> unused 

compute

• Underestimate -> shortage and 

wanting

Utility computing
• Don’t worry about accurately 

estimating needs

• Pay what it is used

• Scale up and down 



Consider a Use Case

• A company needs distributed compute and storage

Traditional Model
• The company provides on-site 

security

• We provide backup power for 

emergencies

Utility computing
• Cloud infra company provides 

security

• Cloud infra company provide 

emergency or fault tolerance



60

Cloud Computing

• Compute, storage, memory, networking, etc. are virtualized 

and exist on remote servers; rented by application users

• The opposite:

• On-premises refers to IT infrastructure hardware and 

software applications that are hosted on-site.



62

Evolution of Cloud Infrastructure

• Data Center: Physical space from which a cloud is operated

• 3 generations of data centers/clouds:

• Cloud 1.0 (Past)

• Cloud 2.0 (Current)

• Cloud 3.0 (Ongoing Research)



63

Car Analogy

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Let’s Implement It!
	Slide 4: Let’s Implement It!
	Slide 5: Concurrency
	Slide 6: “Placement” (vs. Scheduling)
	Slide 7: Placment Goal: Loading Balancing
	Slide 8: In ML, How Placement Optimizations Look Like
	Slide 9: Mutliprocessing Part 2: memory management
	Slide 10: Memory management v0
	Slide 11: Memory management v0: Internal fragmentations
	Slide 12: Memory management v1: use a smaller chunk
	Slide 13: Memory management v1
	Slide 14: Memory: v2
	Slide 15: Memory: v2
	Slide 16: Other Problems?
	Slide 17: Other Problems?
	Slide 18: Other Problems?
	Slide 19: Other Problems?
	Slide 20: Virtual Address Table
	Slide 21: Pages and virtual memory
	Slide 22: Virtual Memory
	Slide 23: Problem addressed?
	Slide 24: Problem addressed?
	Slide 25: Problem addressed?
	Slide 26: Scheduling in ChatGPT
	Slide 27: Foundation of Data Systems
	Slide 28: Modules
	Slide 29: Abstractions: File and Directory
	Slide 30: Filesystem
	Slide 31: Filesystem
	Slide 32: Virtualization of File on Disk
	Slide 33
	Slide 34: Where We Are
	Slide 35: Part 2: Cloud Computing and Distributed Systems
	Slide 36: Today’s topic
	Slide 37: Background of Cloud Computing
	Slide 38: Data Explosion
	Slide 39: Solving the Impedance Mismatch
	Slide 40: Enter the World of Distributed Systems
	Slide 41: Dealing with Distribution: Programming (Part 3)
	Slide 42: Recap: Basics of Computer Organization
	Slide 43: Everything Goes Distributed
	Slide 44: The Datacenter is the new Computer
	Slide 45: Datacenter/Cloud Computing OS
	Slide 46: Classical Operating Systems
	Slide 47: Datacenter/Cloud Operating System
	Slide 48: Pioneer: Google Cloud Infrastructure
	Slide 49: Open Question after class
	Slide 50: Summary: need-based argument
	Slide 51: Summary: need-based argument
	Slide 52: Today’s topic
	Slide 53: Consider a Use Case
	Slide 54: Consider a Use Case
	Slide 55: Consider a Use Case
	Slide 56: Cloud Computing Early Concept: Utility computing 
	Slide 57: Early Concept: Utility computing 
	Slide 58: Consider a Use Case
	Slide 59: Consider a Use Case
	Slide 60: Cloud Computing
	Slide 62: Evolution of Cloud Infrastructure
	Slide 63: Car Analogy

