https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

Where We Are

Machine Learning Systems

Big Data

Foundations of Data Systems 1980 - 2000

Let’s Implement 1!

PID1: iPID2i :PID3!

Let’s Implement 1!

PID1: iPID2i :PID3!

Concurrency

 Modern computers often have multiple processors and
multiple cores per processor

« Concurrency: Multiple processors/cores run different/same
set of instructions simultaneously on different/shared data

Processor 0 Processor 1
Cora 0 Core 1 Core 2 Core 3
: Raaa || CPU CPU CPU CPU
| System
Agent & L1 Cache || || L1 Cache L1 Cache || || L1 Cache
LR L Memory
== | Controlleg|
x L2 Cache L2 Cache
: including
| : | Display;
B itid DMl and
L Msa 70 2 ‘[I
: 8 : — « 118 System Bus System Memory
lEMaEy ‘.: : "":;".,L‘: : =:-.'§ . ila
Lo A, g bl R1 4 8D HSQ
A ._Memory Controller |/0_"~;wa s pmase

"Placement” (vs. Scheduling)

PID1: iPID2i :PID3!

| Physical
3 ===, Processor
“Placement“riaturally emerges:

Q: how fo place processes on each processor so the objective is
optimale

e
Zom|
Bl t |l
~ (inte)
S
%

™ i

7.

Placment Goal: Loading Balancing

Load Balancing: Ensuring different cores/proc. are kept roughly
equally busy, I.e., reduce idle times

Multi-queue multiprocessor scheduling (MQMS) is common
Each proc./core has its own job queue
OS moves jobs across queues based on load
Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3
0 10 20 30 40 50 60 /70 30

INn ML, How Placement Optimizations Look Like

Device 1
Device 2
Device 3

Device 4
Time

L.

= o

+ |

L

12 3 4

> [B B-0-0n

B 1 A 2 KN 3 BN 4 BN S N 6

1 2 3 4 A 4 [

B 9 101112 9

9 101112 n .

10

9 1011 12“13 11
n‘IO 10 paf 11 w412

Mutliprocessing Part 2: memory management

* Strawman-solotion--> spatial-temporal sharing of CPUs with scheduling
®* Assign 1/3 of the memory to each APP

G1. Conveniente

G3: protectione

G2. Efficiente

« G2.1 canlrun N processes but
Nnot N fimes slowere

 G2.2canlrun N apps with toial
mem > physical memory cap

10

Memory management vO

P

P2

11

Memory management vO: Internal fragmentations

I} Intermal FFagmentation

P1

P2

I} Infermal Fagmentation

12

Memory management vil: use a smaller chunk

Q: What is the maximum possible amount of internall
fragmentation per processe

13

Memory management Vv

P1 finishes, P4 amves

P4

14

Memory: v2

P4 scheduled

P4

P2

15

Memory: v2

P5 amved

P5

Problem:
There Is enough memory for P5, but it
cannot be scheduled.

Q: How to address external fragmentation?

external frogmen’ra’non

{

P4

Other Problems®@
_ Problem: We can never schedule

processes with their memory
consumption greater than memaory cap

Ofher Problems?

What if we are unsure about how much
memory PO/P1/P2 will eventudally usee

Other Problems®@

Problem:;
What if we are unsure albout how much
memory PO/P1/P2 will eventudally usee

P1 reserve

P1 reserve is the reservation overhead

Other Problemse
_ What it we know exactly how much

memory PO/P1/P2 will eventually use,
any probleme

Virtual Address Table

P1

P2

Processes is given the
impression that it Is
working with large,

configuous memaory

P

P2

Virtual addresses

Address tronslation

%
A

%
X

N\

/

P2

P

P1

physical pages

21

Pages and virtual memory

®* Page: An abstraction of fixed size chunks of memory/storage
* Page Frame: Virtual slot in DRAM to hold a page’s content
®* Page size Is usually an OS config
® c.9., 4KB to 16KB
* OS Memory Management can
* |dentity pages uniguely

® Read/write page from/to disk when requested by a process

22

Virfual Memory

* Virtual Address vs Physical Address:
®* Physical is tricky and not flexible for programs
* Virtual gives “isolation” illusion when using DRAM
* OS and hardware work together to quickly perform address
translation
* OS maintains free space list fo tell which chunks of DRAM are

available for new processes, avoid conflicts, etfc.

Problem addressedye

Problem: We can never schedule processes with
thelr memory consumption greater than memory

Cap

Solution: create more virt
Iflonal ones to disk.

memory cap. Map add

ual addresses than physical

Problem addressedye

Problem:
What it we are unsure abbout how much memory
PO/P1/P2 willeventudlly use?

Reserve on virtual address, resolve the mapping
P2

between virfual and physical pages on-the-ily

Problem addressedye

What if we know exactly how much memory
PO/P1/P2 will eventudlly use, any problem?

opportunity cost

Because we do everything on the fly —we minimize

Scheduling in ChatGPT

S-I * How to allocate memory for
LLM querye
— S? * Why this could make per

LLM request cheapere

S 3 Existing systems —e— VvLLM

NN
o

Parameter size

Memory usage (GB)
w
o

20
Efficient memory management for large language model serving with pagedattention g 1.2k
W Kwon, Z Li, S Zhuang, Y Sheng, L Zheng, CH Yu, J Gonzalez, H Zhang, ... % orrereesseee s ssss e s s s et se s
Proceedings of the 29th Symposium on Operating Systems Principles, 611-626 ;0-8'('
£
:
= 0

10 20 30 40

Ratrh cize (# reniiectc)

o

Foundation of Data Systems

* Computer Organization

®* Representation of data

® Drocessors, memory, storage
* OS basics

®* Process, scheduling

* Memory

® File System

Moaules

* System call: The core of an OS with modules to abstract the
hardware and APls for programs to use

“‘System Call” AP

Kernel Process Main Memory
Componentsg Management || Management

Virtualize Virtualize

i processor, . . . uen» | Commun. Talkto :

Functionality | “Process’ Virtualize disks; “File over other /0 |
Y . Main Memory | abstraction; .

abstraction; Persistence network devices :

: Concurrency

Hardware device-specific programs

Hardware

29

Abstractions: File

and Directory

® File: A persistent sequence of bytes that stores a logically coherent
digital object for an application

®* Flle Format: An

application-specific standard that dictates how to

iINntferpret and process a file’s bytes

* 100s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying dato
models/types, domain-specific, etc.

* Metadata: Summary or organizing info. about file content (aka
payload) stored with file itself; format-dependent

®* Directory: A cata
and/or (recursive

oging structure with a list of references to files
y) other directories

* Typically treated as a special kind of file
® Sub dir., Parent dir., Rooft drr.

Fllesystem

* Filesystem: The part of OS that helps programs create, manage, and
delete files on disk (sec. storage)

® Roughly splif intfo logical level and physical level

* Logical level exposes file and dir. abstractions and offers System
Call APIs for file handling

* Physical level works with disk firmware and moves bytes to/from
disk to DRAM

31

Fllesystem

®* Dozens of filesystems exist, e.q9., ext2, ext3, NTFS, etc.

® Differ on how they layer file and dir. abstractions as bytes, what
metadata is stored, etc.

® Differ on how data integrity/reliabllity is assured, support for
editing/resizing, compression/encrypftion, etc.

® Some can work with (*mounted” by) multiple OSs

Virtualization of File on Disk

* OS abstracts a file on disk as a virfual object for processes

* File Descriptor: An OS-assigned +ve integer identifier/reference for a
file’s virfual object that a process can use

®* 0/1/2reserved tor STDIN/STDOUT/STDERR
* Fle Handle: A PL's abstraction on top of a file descr. (td)

33

Q: What is a database? How is it different
from just a bunch of files?

Where We Are

Machine Learning Systems

Big Data

2000 -2016

Foundations of Data Systems 1980 - 2000

Part 2: Cloud Computing and Distributed Systems

* Infro to Cloud Compute

* Neftworking

® Distributed Storage and file systems
® Distributed Computing

* Parallelism and consistency

* Advanced Topics

36

Today's topic

* Why cloud computinge
* Need-based argument
* Utility-based argument
* High-level Introduction of Cloud Computing:
* Cloud computing evolution - sharing granularity
* Cloud computing layers
* Advantages of Cloud computing

Background of Cloud Computing

* 1990: Heyday of parallel computing, multi-processors

* 52% growth in performance per year!

e 2002: The thermal wall
* Speed (frequency) peaks,
but transistors keep
shrinking

* The Multicore revolution
* 15-20 years later than
predicted, we have hit

the performance wall

10 -

MIF 3/ CPU clock speed

107 -

—

=
]
|

—
=
|

|
1980

|
1985

|
1940

|
1995

|
2000

|
205

|
2010

Data Explosion

* Billions of users connected through the net

* WWW, FB, twitter, cell phones, ...

* Storage getting cheaper
* Store more data!

* Processing these data N
* Need more FLOPS! »

1950-Jan 1955-Jan 1990-Jan 1995-1an Z000-1ar Z005-1ar 2010-1a
Year

Solving the Impedance Mismatch

* Computers not getting faster, and we are drowning in data

* How to resolve the dilemma??

* Solution adopted by web-scale companies

* Go massively distributed and parallel

Enter the World of Distributed Systems

* Distributed Systems/Computing
* [Loosely coupled set of computers, communicating through message
passing, solving a common goal

* Distributed computing is challenging
* Dealing with partial failures (examples?)
* Dealing with asynchrony (examples?)

* Distributed Computing versus Parallel Computing?
* distributed computing=parallel computing + partial failures

Dealing with Distribution: Programming (Part 3)

* \WWe have seen several of the tools that help with distributed
programming
* Message Passing Interface (MPI)
* Distributed Shared Memory (DSM)
* Remote Procedure Calls (RPC)

* But, distributed programming is still very hard

* Programming for scale, fault-tolerance, consistency, ...

Recap: Basics of Computer Organization

To store and retneve datq, we need:
« Storages and Disks

 Memory

To process data:

e Processors: CPU and GPU

To retrieve data from remote
o Networks

Everything Goes Distributed

To store and retrieve data, we need:
» Distnbuted storage and disks
 Distributed and shared Memory
To process data:

« Distnbuted CPU and GPU

To retrieve data from remote

o Networks

The Datacenter is the new Computer

% MORGANNCLAYPOOL PUBLISHERS

The Datacenter

as a Computer

An Introduction to the Design
of Warehouse-Scale Machines

Luiz Andre Barroso
Urs Holzle

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mark D, Fill, Series Eifiror

» “Program” == Web search, emall,
map/GlS, ...

» “Computer”==10,000's computers,
storage, network

* \Warehouse-sized facilities and
workloads

* Built from less reliable components
than traditional datacenters

Datacenter/Cloud Computing OS

* |f the datacenter/cloud is the new computer

* What is its Operating System?

Classical Operating Systems

* Dafa sforage and sharing

® files, Infer-Process Communication, ...

®* Programming Abstractions

* system calls, APlIs, libraries, ...

* Multiplexing of resources

* Scheduling, virtual memory, file systemes, ...

Datacenter/Cloud Operating System

®* Dafa sharing

®* key/value stores, distributed storage, data warehouse

®* Programming Abstractions

* MapReduce, PIG, Hive, Spark, Ray

* Multiplexing of resources
®* YARN (MRv2), ZooKeeper, BookKeeper, K&S, ...

Pioneer: Google Cloud Infrastructure

* Google File System (GFS), 2003
® Distributed File System for entire
cluster

* Google MapReduce (MR), 2004
®* Runs queries/jobs on data
* Manages work distribution & fault-
folerance
* Colocated with file system

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google®

ABSTRACT
We have designed and implemented the Google File Svys-
tem, a scalable distributed file system for large distributed
data-intensive applications. [t provides fanlt tolerance while
runaing on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of elients.

While zharing many of the zame goalz as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect & marked
departure from some carlier file system assumptions. This
has led us to reexamine traditional ehoices and explore rad-
ically different design points,

The file system has successfully met our storage needs.
It iz widely deployed within Google as the storage platform
£ & - I . - L J— - £ - _—

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability, However, its design
has been driven by key observations of our application work-
loads and techrological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional cholces and explored radically different points in the
design space.

First, component failures are the norm rather than the
exeeption. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-

mmAditsr maets _and i accosond Thar oo cssmmaeakblo ssasadbae of

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay & google.com

Google, Inc.

Abstract

MapReduce 1s a programming model and an associ-
ated implementation for processing and generating large
data sets, Users specifly a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key, Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automnati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data 1s usually
large and the computations have to be distibuted across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire o obscure the onginal simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-

* Apache open source versions Hadoop DFS and Hadoop MR

Open Question after class

Google has pioneered and created many distributed systems and
technologies that shape today’s cloud computing, but why Amazon (and

even Microsoft) wins over Google Cloud (GCP) on Cloud computing market

sharese

Summary: need-pbased argument

Need more compute and storage Single computer hits physical limits

|

Distniouted
Computing

|

Cloud has a lof of compute and
storage

Summary: need-pbased argument

Need more compute andstorage Single computer hits physical limits
Distniouted
Computl
Cloud has a lot of compute and On-premise or supercomputers
storage also have alot of compute and

storage

52

Today's topic

* Why cloud computinge
* Need-based argument
* Utility-based argument
* High-level Infroduction of Cloud Computing:
* Cloud computing evolution - sharing granularity
* Cloud computing layers
* Advantages of Cloud computing

Consider a Use Case

* A company needs more compute and storage

Traditional Model

« We manage and store
computes on premise

e Responsible for securty

« Responsible for power

« Responsible for network

« Responsible for ...

Consider a Use Case

* A company needs more compute and storage

Traditional Model

If we heed more computers (a.k.a.

we want to scale)

* We order computers

* They are delivered to our site

« We install them and connect
them to the cluster via network.

Summit

Supercomputer :

Consider a Use Case

* A company needs more compute and s

Traditional Model
If updates or securty patches are

Issued : Summit or OLCF-4 is a supercomputer developed by IBM for
use at Oak Ridge Leadership Computing Facility, a facility at

® We mO ke Sure This iS TO ken COre the Oak Ridge National Laboratory, capable of 200

petaFLOPS thus making it the 5th fastest supercomputer in

Of for eOCh COmpUTer in The the world after Frontier, Fugaku, LUMI, and Leonardo, with

Frontier being the fastest. Wikipedia

C‘USTer. Speed: 200 petaFLOPS (peak)

Architecture: 9,216 POWER9 22-core CPUs; 27,648 Nvidia
Tesla V100 GPUs

[&] More images

Operating system: Red Hat Enterprise Linux (RHEL)
Power: 13 MW

Purpose: Scientific research

Ranking: TOP500: 5

Storage: 250 PB

Cloud Computing Early Concept: Utility computing

* Utility computing
* From concept of a public utility such as water or electricity

* Consider: everyday electricity usage

® [tIs summer, we turn on A/C

* We do not nofify electric company when we heed more eleciricity.
It Is Just There.

* We do not go to hardware store buy/install more generators

* |Tis Spring, we turn off A/C
* We do not notity electric company when we need less

* [ti1s Winter, we furn on heater
* My usage goes up and down, but | just use

Early Concept: Utllity computing

* Utillity computing
* Compute power is available on demand
®* | can scale up or down as needed
* | don't need to determine needs in advance

* Not the case any more for GPU market

Consider a Use Case

* A company needs distributed compute and storage

Traditional Model Utility computing
e Determine needs in advance * Don't worry about accurately
« QOverestmate -> unused estimating needs
compute « Paywhatitis used
» Underestimate -> shortage and » Scale up and down

wanting

Consider a Use Case

* A company needs distributed compute and storage

Traditional Model Utility computing

« The company provides on-site » Cloud infra company provides
security security

» We provide backup power for » Cloud Infra company provide

emergencies emergency or fault folerance

60

Cloud Computing

* Compute, storage, memory, networking, etc. are virtualized
and exist on remote servers; rented by application users

* The opposite:

* On-premises refers to IT infrastructure hardware and
soffware applications that are hosted on-site.

62

Evolution of Cloud Infrastructure

* Data Center: Physical space from which a cloud is operated
* 3 generations of data centers/clouds:
* Cloud 1.0 (Past)

* Cloud 2.0 (Current)
* Cloud 3.0 (Ongoing Research)

Car Analogy

Rent a car City car-sharing
(Bare metal servers) (VPS) SERELESS

Cars are parked 95% of the time (loige.link/car-parked-95)
How much do you use the car?

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona
https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Let’s Implement It!
	Slide 4: Let’s Implement It!
	Slide 5: Concurrency
	Slide 6: “Placement” (vs. Scheduling)
	Slide 7: Placment Goal: Loading Balancing
	Slide 8: In ML, How Placement Optimizations Look Like
	Slide 9: Mutliprocessing Part 2: memory management
	Slide 10: Memory management v0
	Slide 11: Memory management v0: Internal fragmentations
	Slide 12: Memory management v1: use a smaller chunk
	Slide 13: Memory management v1
	Slide 14: Memory: v2
	Slide 15: Memory: v2
	Slide 16: Other Problems?
	Slide 17: Other Problems?
	Slide 18: Other Problems?
	Slide 19: Other Problems?
	Slide 20: Virtual Address Table
	Slide 21: Pages and virtual memory
	Slide 22: Virtual Memory
	Slide 23: Problem addressed?
	Slide 24: Problem addressed?
	Slide 25: Problem addressed?
	Slide 26: Scheduling in ChatGPT
	Slide 27: Foundation of Data Systems
	Slide 28: Modules
	Slide 29: Abstractions: File and Directory
	Slide 30: Filesystem
	Slide 31: Filesystem
	Slide 32: Virtualization of File on Disk
	Slide 33
	Slide 34: Where We Are
	Slide 35: Part 2: Cloud Computing and Distributed Systems
	Slide 36: Today’s topic
	Slide 37: Background of Cloud Computing
	Slide 38: Data Explosion
	Slide 39: Solving the Impedance Mismatch
	Slide 40: Enter the World of Distributed Systems
	Slide 41: Dealing with Distribution: Programming (Part 3)
	Slide 42: Recap: Basics of Computer Organization
	Slide 43: Everything Goes Distributed
	Slide 44: The Datacenter is the new Computer
	Slide 45: Datacenter/Cloud Computing OS
	Slide 46: Classical Operating Systems
	Slide 47: Datacenter/Cloud Operating System
	Slide 48: Pioneer: Google Cloud Infrastructure
	Slide 49: Open Question after class
	Slide 50: Summary: need-based argument
	Slide 51: Summary: need-based argument
	Slide 52: Today’s topic
	Slide 53: Consider a Use Case
	Slide 54: Consider a Use Case
	Slide 55: Consider a Use Case
	Slide 56: Cloud Computing Early Concept: Utility computing
	Slide 57: Early Concept: Utility computing
	Slide 58: Consider a Use Case
	Slide 59: Consider a Use Case
	Slide 60: Cloud Computing
	Slide 62: Evolution of Cloud Infrastructure
	Slide 63: Car Analogy

